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A numerical simulation was conducted to investigate the steady laminar natural convective heat transfer
for air within the horizontal annulus between a heated triangular cylinder and its circular cylindrical
enclosure. The Boussinesq approximation was applied to model the buoyancy-driven effect and the gov-
erning equations were solved using the finite volume method. Four different Rayleigh numbers and four
different radius ratios were considered, and four different inclination angles for the inner triangular cyl-
inder were investigated as well. The computed flow and temperature fields were demonstrated in the
form of streamlines and isotherms. Variations of the maximum stream function and the local and average
Nusselt numbers were displayed as functions of the above-mentioned parameters. Correlations of the
average Nusselt number were proposed based on curve fitting. At constant radius ratio, inclination angles
of the inner triangular cylinder are found to have negligible effects on the average Nusselt number.

Published by Elsevier Ltd.
1. Introduction made to investigate the steady laminar natural convective heat
Laminar natural convective heat transfer inside enclosures with
internal bodies has been extensively studied in the past decades
due to the growing requirement for a deeper understanding of this
phenomenon that is related to many industrial applications,
including design of solar collectors and thermal storage systems,
and thermal management of aviation and consumer electronics
as well. As one of the most representative cases, steady laminar
natural convection within an annular region constrained between
two horizontally placed cylinders has received increased attention.
Kuehn and Goldstein [1] presented a review of early works of this
subject published before 1970s. In the same paper, an experimen-
tal and theoretical study of natural convection between two iso-
thermal horizontal concentric cylinders was also presented. A
following paper [2] by the same authors was focused on both con-
centric and eccentric cylinders and the Rayleigh number range
considered was extended. The experimental data reported in these
two papers has frequently been referred to as benchmarking
results. Since then, a great number of numerical efforts have been
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transfer within horizontal concentric and eccentric circular annuli
for different boundary conditions, i.e., isothermal [3–10], constant
heat flux [11,12], and mixed boundary conditions [13,14]. The
effects of radius ratios, eccentricities, Prandtl numbers [15], and
temperature-dependent fluid properties [16] on natural convec-
tion have also been studied. Other than the most widely used finite
volume approach, some other numerical methods, such as the dif-
ferential quadrature method [17–19] and the lattice Boltzmann
method [20], have been effectively employed in this subject.

Recently, natural convection in horizontal annuli with a non-
circular inner or outer cylinder has been studied, including ellipti-
cal [21–24], square/rectangular [25,26], rhombic [27,28] cylinders
and their combinations. The most concerned combination is a cir-
cular cylinder enclosed by a square/rectangular cylinder [29–35].
On the other hand, triangular enclosures in the absence of internal
bodies have long been studied for modeling the natural convection
heat transfer in pitched roofs [36–38]. However, the authors are
unaware of any published work on natural convection in an annu-
lus with an inner triangular cylinder.

Unlike circular or elliptical cylinders, triangular cylinders, due
to their asymmetric and piecewise smooth nature, are expected
to have special effects on modification of natural convective flow
and heat transfer in horizontal annuli. Hence, in order to extend
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Nomenclature

b side width of equilateral triangle (m)
cp specific heat (kJ/kgK)
g gravitational acceleration (m/s2)
h heat transfer coefficient (W/m2 K)
k thermal conductivity (W/mK)
L characteristic length, L = Ro � Ri (m)
Nu, Nu local and average Nusselt number
p, P dimensional and dimensionless thermodynamic

pressure
Pr Prandtl number
q local heat flux (W/m2)
R radius of circle, (m)
Ra Rayleigh number
RR radius ratio, Ro/Ri

s, S dimensional and dimensionless local coordinate
T, T dimensional and dimensionless temperature

u, U dimensional and dimensionless velocity in x direction
m, V dimensional and dimensionless velocity in y direction
Greek symbols
a thermal diffusivity (m2/s)
b thermal expansion coefficient (1/K)
h polar coordinate
m kinematic viscosity (m2/s)
q fluid density (kg/m3)
u inclination angle
w dimensionless stream function
Subscripts
i inner triangular cylinder
o outer circular cylinder
L based on length L
max maximum
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the knowledge of natural convective heat transfer inside horizontal
non-circular annuli, the effects of geometric configurations and
inclination angles on steady laminar natural convection of air from
a triangular cylinder to its concentric cylindrical enclosure are sys-
tematically investigated in this study. Equilateral triangular cylin-
ders are only concerned without loss of generality.

The rest of this paper is consisted of four sections. The physical
domain of interest and its mathematical formulation are described
in the next section. The computational methodology and procedure
are then presented, which are followed by a detailed presentation
and discussion of the numerical results. Some concluding remarks
are finally drawn based on the foregoing analysis.
2. Problem formulation

2.1. Geometric description

The problem to be considered is that of an annular region filled
with air between an outer circular cylinder and an inner equilateral
triangular cylinder that are concentrically placed. By assuming that
both cylinders are extremely long in the axial direction into the
page, the problem is considered two-dimensional. The outer and
inner cylinders are both isothermal and maintained at constant
temperatures To and Ti, respectively, with To < Ti. The physical
domain of interest and its associated coordinate systems are
sketched in Fig. 1. The problem will be solved in the global Carte-
sian coordinate with the origin at the center of both the circle and
the equilateral triangle. The gravity is set to be along the negative y
direction and two special coordinates are adopted to assist the
x
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Fig. 1. Schematic diagram of the physical domain and coordinate systems.
analysis of the numerical results. As shown in Fig. 1, the polar h
coordinate with its origin positioned at the center initiates from
the positive y axis (where h = 0) and rotates in the clockwise direc-
tion, whereas the local s coordinate along the triangular walls is
adopted with its origin placed at the apex of the triangle (where
s = 0). It is obvious that the maximum s coordinate is equal to
the perimeter of the triangle, smax = 3b. The s coordinate is there-
fore normalized as S = s/3b. The inclination angle of the inner trian-
gular cylinder, which is denoted by u, is also shown in Fig. 1. The
radius ratio (RR) is defined as the ratio of the radius of the outer cir-
cle to the radius of the circumscribed circle of the inner equilateral
triangle, which is expressed as RR = Ro/Ri.
2.2. Governing equations and boundary conditions

A set of dimensionless variables are introduced as:

X ¼ x
L
; Y ¼ y

L
; U ¼ uL

m
; V ¼ vL

m
; �T ¼ T � To

Ti � To
;

P ¼ ðpþ qgyÞL2

qm2 ; Pr ¼ m
a
; and Ra ¼ gbðTi � ToÞL3

ma
;

where the characteristic length L is defined as the difference
between the radius of the outer circle and the radius of the circum-
scribed circle of the inner triangle, L = Ro � Ri.

By applying these dimensionless variables, the governing equa-
tions for this problem in dimensionless form are given by

Continuity:

@U
@X
þ @V
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¼ 0; ð1Þ

Horizontal direction momentum:
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Vertical direction momentum:
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Energy:
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where the presence of the last term on the right-hand side of Eq. (3)
is due to the application of the Boussinesq approximation.
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It is clearly seen that the Prandtl and Rayleigh numbers are the
two parameters that govern this problem. Since air is the only con-
cerned fluid, which indicates that the Prandtl number is fixed at
Pr = 0.71, the effects of the Prandtl number are unavailable in this
study. The Rayleigh number, however, is varied within a range up
to Ra = 106, which ensures that the flow is inherently laminar and
justifies the steady state assumption. Both hydrodynamic and ther-
mal boundary conditions for this problem are obvious. No-slip
boundary conditions hold along both the outer and the inner walls,
which are maintained at uniform dimensionless temperatures
�T ¼ 0 and �T ¼ 1, respectively.
Fig. 2. Comparison of the equivalent conductivity along both the outer and the
inner walls between numerical results of current code and available experimental
data [1] for a horizontal concentric circular annulus (RR = 2.6, Ra = 4.8 � 104).

Table 1
Comparison of the maximum stream function among different grid sizes (RR = 2.0,
Ra = 106).

Number of cells wmax Deviation (%)

6000 14.5497 3.77
9000 14.3427 2.29
11,000 14.0267 0.04
14,000 14.0213 0.00
3. Numerical solution

3.1. Computational details

The governing equations were solved using the finite volume
method in which the pressure correction procedure was conducted
following the SIMPLE algorithm proposed by Patankar [39]. The
grid system was created using unstructured triangular cells, which
were unevenly distributed over the computational domain and
concentrated near the three vertices of the inner triangle where
higher grid densities are required. In discretizing the governing
equations, the second order upwind scheme was adopted for both
momentum and energy equations, whereas the PRESTO scheme
was utilized for pressure correction equation. The convergence cri-
terion was set to 10�6 for each variable.

It is worthy noting that in many numerical investigations of
natural convection in horizontal annuli, for the sake of symmetry,
the problems were solved in half domains and symmetric bound-
ary conditions were set at symmetric planes. In many cases, this
simplification successfully saved the computational expenses and
was proven to be able to yield fairly good results. However, as dis-
cussed by Holtzman et al. [36], though a domain has a symmetric
plane along the gravitational direction, the flow and temperature
fields may feature asymmetric and the asymmetry becomes more
pronounced as the Rayleigh number is increased. Therefore, all
cases studied in the present study were solved in entire domains.

3.2. Code validation

Due to the lack of published experimental data for the geometry
concerned in the present study, benchmarking results for the hor-
izontal concentric circular annulus by Kehn and Goldstein [1] were
used for the validation of the current code. The case of RR = 2.6 and
Ra = 4.8 � 104 was chosen for comparison. The computational do-
main, thermal properties, and boundary conditions in current code
were set to be exactly identical to those in the benchmarking work.
The computational procedure, however, was implemented follow-
ing the way mentioned in the previous section.

The comparison of the equivalent conductivity, which is defined
as the ratio of the local Nusselt number to the Nusselt number for
pure conduction situation of the same geometry and configuration,
is shown in Fig. 2. Along both the outer and the inner walls, most
data points exhibit extremely good agreement between the
numerical and the benchmarking results, though some little devi-
ations are found at both the lower part of the inner wall and the
upper part of the outer wall.

3.3. Grid independence test

To ensure the accuracy of the numerical results and to find a
proper size of grids, a grid independence test is carried out in this
section for the case of u = 0�, RR = 2.0, and Ra = 106. In order to
examine the dependence of the computed flow field upon the grid
density, the comparison of the maximum dimensionless stream
function is presented. As listed in Table 1, various grid numbers
yield nearly identical results of the maximum stream function with
a maximum deviation less than 4%. Especially, the two greatest
grid sizes of 11,000 and 14,000 cells give almost exactly identical
results with only a 0.04% deviation. The grid size of about 14 000
cells was therefore chosen for all cases studied.

4. Results and discussion

The study was first conducted for cases that the apex of the tri-
angle is positioned through the vertical centerline, i.e., u = 0�. In
these cases, four different radius ratios (RR = 3.0, 2.0, 1.5, and 1.2)
and four different Rayleigh numbers (Ra = 103, 104, 105, and 106)
were considered. The inner triangular cylinder was then clock wi-
sely rotated about its center for three different angles with incre-
ments of 15�, i.e., u = 15�, 30�, and 45�. Four radius ratios at
Ra = 106, which is the highest Rayleigh number considered, were
studied for each inclination angle.

4.1. Effects of radius ratio and the Rayleigh number at u = 0�

4.1.1. Streamlines
A composite diagram of the streamlines for all cases at u = 0� is

displayed in Fig. 3, in which the subfigures are arranged going from
left to right with ascending Rayleigh number and going down with
descending radius ratio. As shown in Fig. 3, the annular domain can
be roughly divided into three regions, i.e., two upper regions above
the sides of the triangle and the lower region below the bottom of
the triangle. In general, the air heated by the triangular wall rises
and is then cooled down and falls along the outer circular
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Fig. 3. Streamlines for (a) RR = 3.0, (b) RR = 2.0, (c) RR = 1.5, and (d) RR = 1.2 at different Rayleigh numbers.

Fig. 4. Variation of the maximum stream function as a function of the Rayleigh
number.
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enclosure, thus leading to a main recirculating cell in each upper
region. It is also clearly shown that streamlines are distorted near
the two lower vertices of the triangle and the distortion becomes
more remarkable with decreasing radius ratio. At RR = 1.2, it is
observed that each main cell is separated into two vortex cores
by strong distortion. In addition, as the Rayleigh number is
increased, for each radius ratio the streamlines become more con-
centrated next to the walls.

The cell patterns exhibit nearly symmetric features about the
central planes but show great discrepancies in shape among differ-
ent Rayleigh numbers. The subfigures in the first two columns in
Fig. 3 demonstrate bean-shaped cells. However, the cell patterns
for Ra = 105 and 106 are totally different from those for Ra = 103

and 104 because the stronger stretching effect yields more strati-
fied streamlines. At RR = 1.2 and Ra = 106, the streamlines in the
middle regions are nearly flat.

4.1.2. Maximum stream function
The maximum stream function, which represents the flow

intensity, is compared in Fig. 4. As the radius ratio is deceased,
the maximum stream function becomes greater, which is indica-
tive that the flow recirculates faster. This is also proven by the
more densely packed streamlines for higher Rayleigh numbers
shown in Fig. 3. Because the Rayleigh number in this study is
defined based on the gap L between two cylinders, at constant Ray-
leigh number the flow area for a higher radius ratio is greater than
that for a lower radius ratio, thus enhancing the total heat transfer
and buoyancy-driven convection. On the other hand, as pointed
out by Moukalled and Acharya [30], a competing effect that is pro-
duced by increasing the flow area will slow the flow down due to
the additional viscous friction. Consequently, the counteraction
between these two effects will determine to what extent the recir-
culating flows are enhanced.

At Ra = 103, the flow enhancement owing to the buoyancy-dri-
ven effect compensates for the additional viscous attenuation,
which leads to that the maximum stream functions are very close
for different radius ratios. However, at higher Rayleigh numbers,
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Fig. 5. Isotherms for (a) RR = 3.0, (b) RR = 2.0, (c) RR = 1.5, and (d) RR = 1.2 at different Rayleigh numbers.
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the maximum stream functions for lower radius ratios increase
faster since the buoyancy-driven convection enhancement is dom-
inant and the additional viscous effect becomes insignificant.

4.1.3. Isotherms
The isotherms for various radius ratios and Rayleigh numbers

are presented in Fig. 5 as a composite diagram with the same
arrangement as Fig. 3. Almost exact symmetry is observed in all
subfigures. As the Rayleigh number is increased, the isotherms
next to the walls become more densely packed, which indicates
higher local heat transfer coefficients. At Ra = 103 and RR = 3.0,
the isotherms are nearly concentric circles with little distortion
near the apex of the triangle. It turns out that the temperature field
is similar to the pure conduction situation due to the weak recircu-
lation in this case.

It is clearly shown in the subfigures for higher Rayleigh
numbers that the thermal boundary layer along the inner heated
cylinder separate away from the surface near the apex and then
form a thermal plume pointing to the top region of the outer
cylinder. Another remarkable phenomenon is the stratification in
temperature fields, which is more clearly observed with decreasing
radius ratio and with increasing Rayleigh number. At Ra = 106 and
RR = 1.2, the isotherms are almost flat and uniformly distributed
along the vertical direction.

4.1.4. Local Nusselt number
The local Nusselt number based on the characteristic length L is

defined as

NuL ¼
hL
k
; ð5Þ

where the heat transfer coefficient h is evaluated by
h ¼ q
Ti � To;

ð6Þ

where q is the local heat flux along the outer and the inner walls.
Fig. 6 depicts the variation of the local Nusselt number along the

outer circular wall. As expected, the relatively flat solid curves,
which correspond to the cases of Ra = 103, are much lower than other
curves. The local Nusselt numbers become much greater in the upper
regions of the annuli with increasing Rayleigh number for each
radius ratio, because of the increasing convection contribution to
heat transfer. In most cases with higher local Nusselt numbers,
two peaks are observed around the top points (h = 0� or 360�) due
to the thermal plumes that are observed in Fig. 5. The distance
between the two peak positions is identical to the width of the ther-
mal plume. When the thermal plume is very weak for some cases, the
two peaks merge into one peak which is right at the top point. At
Ra = 106, the highest peak value is found for RR = 1.5. It is also shown
that in the lower regions (120� < h < 240�), the local Nusselt numbers
are always low due to the fact that conduction in the lower regions is
dominant.

The variation of the local Nusselt number along the inner trian-
gular wall is displayed in Fig. 7. Two peaks right at the two lower
vertices of the triangle (S = 1/3 and 2/3) are observed. The peak
values decrease with decreasing radius ratio and with decreasing
Rayleigh number. In the two upper regions (0 6 S 6 1/3 and
2/3 6 S 6 1), the curves are more linear for RR = 1.2 than for other
radius ratios due to stronger thermal stratification. In the conduc-
tion-dominated lower regions (1/3 6 S 6 2/3), the curves are flat as
expected. At the apexes (S = 0 or 1), the curves exhibit local peaks
for the cases with lower Rayleigh numbers. However, at higher
Rayleigh numbers, these local peaks switch to local troughs due
to the presence of thermal plumes. Recall that the thermal plume



(a) RR = 3.0 (b) RR = 2.0

(c) RR = 1.5 (d) RR = 1.2

Fig. 6. Variation of the local Nusselt number along the outer circular wall.
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is formed by the separated thermal boundary layers near the apex.
Stronger thermal plume formation at higher Rayleigh numbers
indicates more intensive separation of boundary layers, thus lead-
ing to lower local heat transfer rates.

4.1.5. Average Nusselt number and correlation
The variation of the average Nusselt number that is utilized to

evaluate the overall heat transfer rate is presented in this section.
The average Nusselt numbers along the outer and the inner walls
are defined, respectively, as

NuL ¼
1

2p

Z 2p

0
NuL dh; ð7Þ

NuL ¼
1

3b

Z 3b

0
NuL ds ¼

Z 1

0
NuL dS: ð8Þ

The average Nusselt numbers for all cases studied are plotted in
Fig. 8. For both the outer and the inner walls, the average Nusselt
number increases as the Rayleigh number is increased due to the
increasing contribution of natural convection. The radius ratio,
however, has opposite influences on the outer and inner walls. It
is shown that increasing radius ratio decreases the average Nusselt
number along the outer wall, and on the contrary, increasing
radius ratio increases the average Nusselt number along the inner
wall. For the average Nusselt number along the outer wall, the
influence of the radius ratio at lower Rayleigh numbers is insignif-
icant, and as the Rayleigh number increases the influence becomes
remarkable.
Instead of using the characteristic length L, the Nusselt numbers
along the outer and the inner walls can be defined based on their
respective perimeters, 2pRo and 3b, as

Nuo ¼
2pRoh

k
; ð9Þ

Nui ¼
3bh

k
¼ 3

ffiffiffi
3
p

Rih
k

: ð10Þ

It is evident that at steady state the average Nusselt num-
bers along the outer and inner walls are identical to each
other, i.e., Nu ¼ Nuo ¼ Nui, so there is no need to distinguish
them. The average Nusselt numbers based on the definitions
from either Eq. (9) or Eq. (10) are calculated and plotted in
Fig. 9. At constant radius ratio, the four points on the log-
log coordinates, logðNuÞ vs log(Ra), are nearly along a straight
line. By performing curve fitting via a least square regression
method, the linear expressions for the four lines are found
as shown in Fig. 9. The correlations of the average Nusselt
number are then obtained and listed in Table 2. Note that
the correlations are only valid under the laminar flow
condition and at Pr = 0.71. It is seen that the exponent of
the Rayleigh number increases with decreasing radius ratio
and all exponents lie in the range between 0.24 and 0.29,
which is consistent with the exponent range from 0.23 to
0.3 that is reported in available literature for laminar natural
convective heat transfer in horizontal annuli with other
geometries.



(a) Outer circular wall (b) Inner triangular wall 

Fig. 8. Variation of the average Nusselt number along both the (a) outer and the (b) inner walls.

(a) RR = 3.0 (b) RR = 2.0

(c) RR = 1.5 (d) RR = 1.2

Fig. 7. Variation of the local Nusselt number along the inner triangular wall.
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4.2. Effects of inclination angle at Ra = 106

4.2.1. Streamlines
A composite diagram of the streamlines for all cases at Ra = 106

is displayed in Fig. 10, in which the subfigures are arranged going
from left to right with ascending inclination angle and going down
with descending radius ratio. The most evident feature in these
subfigures is that the appearance of strongly asymmetric flow pat-
terns when the inner triangle is rotated. This is due to that the
symmetric plane of the domain of interest is no longer along the
gravitational direction after being rotated. Once the inner cylinder
is rotated, no matter what the inclination angle is, the main recir-
culating cell in the left upper region separates into at least two vor-
tex cores. As the radius ratio is lowered, the influence of the
inclination angle becomes more remarkable. The boundary layer
separation is clearly seen for higher inclination angles, which
occurs near the left vertex of the triangle. The separated boundary
layer reattaches to the left side wall, which produces a small recir-
culating cell. As the inclination angle is increased and as the radius
ratio is decreased, the boundary layer separation becomes more
pronounced and those small cells become bigger. Multicellular
flow patterns appear when the inclination angle is larger than
30�. At u = 45� and RR = 1.2, four cells related to the Rayleigh–Be-
nard convection are clearly observed in the upper region. It is
worthy noting that if the inclination angle is further increased to
60�, that is the case of the vertical side on the top, the flow
becomes unstable. In the present study, cases without steady solu-
tions were not considered.



Table 2
Correlations of the average Nusselt number based on curve fitting.

RR Nu Maximum deviation (%)

3.0 1.033 Ra0.246 2.81
2.0 1.354 Ra0.262 3.71
1.5 1.921 Ra0.273 2.02
1.2 3.264 Ra0.286 4.04

Fig. 9. Curve fitting of the average Nusselt number as a function of the Rayleigh
number.
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4.2.2. Isotherms
The isotherms for various radius ratios and inclination angles

are displayed in Fig. 11 as a composite diagram with the same
arrangement as Fig. 10. Once the triangular cylinder is rotated,
the thermal plume is also turned in the same direction but with
smaller angles. In many cases, strong thermal stratification still
exists. However, at higher inclination angles, stratification in the
(a) 

(b) 

(c) 

(d) 

φ = 0° φ = 15° 

Fig. 10. Streamlines for (a) RR = 3.0, (b) RR = 2.0, (c) RR = 1.5, a
left upper regions is broken due to the presence of multicellular
flow patterns observed in Fig. 10. An interesting phenomenon is
that, at RR = 1.2 and u = 45�, due to the presence of the Rayleigh–
Benard cells, a secondary thermal plume appears ascending from
the upper half of the left side wall of the triangle.

4.2.3. Local and average Nusselt numbers
The local Nusselt number along the outer circular wall for differ-

ent radius ratios is shown in Fig. 12. In general, the maximum values
are not affected by the inclination angle. The peak positions, how-
ever, are altered by the rotation of the triangular cylinder. In
Fig. 13, the local Nusselt numbers along the inner triangular wall
for different radius ratios are plotted. Since the local dimensionless
S coordinate is attached to the walls of the triangle, the two peak
positions for each case are fixed at S = 1/3 (right vertex) and S = 2/3
(left vertex). The most remarkable influence of the inclination angle
is the alternation of the peak values. At the right vertex, the rotation
of the triangular cylinder strongly enhances the local Nusselt num-
ber, whereas at the left vertex, the inverse effect is observed. At con-
stant radius ratio, however, though the local Nusselt number is
nearly everywhere higher for a greater inclination angle, the peak
φ = 30° φ = 45° 

nd (d) RR = 1.2 at different inclination angles at Ra = 106.



(a) 

(b) 

(c) 

(d) 

φ = 0° φ = 15° φ = 30° φ = 45° 

Fig. 11. Isotherms for (a) RR = 3.0, (b) RR = 2.0, (c) RR = 1.5, and (d) RR = 1.2 at different inclination angles at Ra = 106.

(a) RR = 3.0 (b) RR = 2.0

(c) RR = 1.5 (d) RR = 1.2

Fig. 12. Variation of the local Nusselt number along the outer circular wall for different radius ratios at Ra = 106.
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(a) RR = 3.0 (b) RR = 2.0

(c) RR = 1.5 (d) RR = 1.2

Fig. 13. Variation of the local Nusselt number along the inner triangular wall for different radius ratios at Ra = 106.
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values are almost identical for all angles. An evident local trough is
observed on the curve of RR = 1.2 and u = 45� within the range of
2/3 6 S 6 1. According to the foregoing discussion, the presence of
a thermal plume yields a trough in the local Nusselt number curve
due to the thermal boundary layer separation. Therefore, the local
trough observed here directly proves the presence of the Rayleigh-
Benard cells and the induced secondary thermal plume.

Finally, variations of the average Nusselt number for different
radius ratios are demonstrated in Fig. 14. The four nearly flat
Fig. 14. Variation of the average Nusselt number for different inclination angles at
Ra = 106.
curves indicate that the inclination angles have negligible effects
on the average Nusselt number. Though the presence of multicel-
lular flow patterns remarkably alters the local heat transfer along
both the outer and the inner walls, the overall heat transfer rate
within the domain of interest is not affected and remains nearly
constant with increasing inclination angle.

5. Conclusions

A numerical investigation of steady laminar natural convection
from a heated triangular cylinder to its circular cylindrical enclo-
sure was presented. Based on the foregoing analysis of the numer-
ical results, some concluding remarks can be drawn as follows:

1. The formation of thermal plumes was clearly observed at
higher Rayleigh numbers due to the thermal boundary layer sepa-
ration. Another remarkable phenomenon is the thermal stratifica-
tion, which becomes stronger with decreasing radius ratio and
with increasing Rayleigh number.

2. At constant radius ratio, due to the increasing convection
contribution to heat transfer, the local Nusselt numbers along both
the outer and the inner walls are increased with increasing Ray-
leigh number.

3. Correlations of the average Nusselt number for different
radius ratios were proposed. The exponent of the Rayleigh number
increases with decreasing radius ratio and all exponents lie in the
range between 0.24 and 0.29.

4. Multicellular flow patterns appear at larger inclination
angles. At u = 45� and RR = 1.2, four recirculating cells related to
the Rayleigh–Benard convection can be seen in the upper region,
which result in a secondary thermal plume.

5. The peak positions on the curves of the local Nusselt number
along the outer wall are altered by the rotation of the inner



3186 X. Xu et al. / International Journal of Heat and Mass Transfer 52 (2009) 3176–3186
triangular cylinder because the thermal plumes are turned also. At
constant radius ratio, however, it is found that the inclination
angles have negligible effects on the average Nusselt number.
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